Multi-task and multi-kernel Gaussian process dynamical systems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-task Gaussian Process Prediction

In this paper we investigate multi-task learning in the context of Gaussian Processes (GP). We propose a model that learns a shared covariance function on input-dependent features and a “free-form” covariance matrix over tasks. This allows for good flexibility when modelling inter-task dependencies while avoiding the need for large amounts of data for training. We show that under the assumption...

متن کامل

Variational Dependent Multi-output Gaussian Process Dynamical Systems

This paper presents a dependent multi-output Gaussian process (GP) for modeling complex dynamical systems. The outputs are dependent in this model, which is largely different from previous GP dynamical systems. We adopt convolved multi-output GPs to model the outputs, which are provided with a flexible multi-output covariance function. We adapt the variational inference method with inducing poi...

متن کامل

Multi-Kernel Gaussian Processes

Although Gaussian process inference is usually formulated for a single output, in many machine learning problems the objective is to infer multiple tasks jointly, possibly exploring the dependencies between them to improve results. Real world examples of this problem include ore mining where the objective is to infer the concentration of several chemical components to assess the ore quality. Si...

متن کامل

SSN_MLRG1 at SemEval-2017 Task 4: Sentiment Analysis in Twitter Using Multi-Kernel Gaussian Process Classifier

The SSN MLRG1 team for Semeval-2017 task 4 has applied Gaussian Process, with bag of words feature vectors and fixed rule multi-kernel learning, for sentiment analysis of tweets. Since tweets on the same topic, made at different times, may exhibit different emotions, their properties such as smoothness and periodicity also vary with time. Our experiments show that, compared to single kernel, mu...

متن کامل

Variational Gaussian Process Dynamical Systems

High dimensional time series are endemic in applications of machine learning such as robotics (sensor data), computational biology (gene expression data), vision (video sequences) and graphics (motion capture data). Practical nonlinear probabilistic approaches to this data are required. In this paper we introduce the variational Gaussian process dynamical system. Our work builds on recent varia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pattern Recognition

سال: 2017

ISSN: 0031-3203

DOI: 10.1016/j.patcog.2016.12.014